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Abstract 

To implement a Byzantine fault tolerant Raft algorithm, a variant of the Raft algorithm with modified 
leader election and log replication is proposed. This modification requires that all messages 
between nodes are cryptographically signed, and that each transaction requires that the leader 
provides proof of valid quorum. The original Raft leadership election is modified via the round robin 
algorithm to prevent Byzantine nodes from obstructing the normal behavior of the consensus 
cluster. 

Keywords: Raft Algorithm, Byzantine fault tolerance 

 

1. Introduction 

More and more of the software nowadays is being migrated to the various cloud offerings and is 
moving to a more decentralized model of use. This shift to a more decentralized model also extends 
to various methods of data storage ensuring that the data is always available. This data is either 
sharded or replicated (sometimes even both) and is distributed on the storage mediums that are not 
necessarily located within the same server rack. This distribution is therefore highly sensitive to any 
disruptions on the storage mediums and must be made as resilient as possible.  

Synchronization of the storage mediums is generally controlled and managed by an implementation 
of a consensus algorithm such as Paxos (Pease et al., 1980 ) or Raft (Ongaro & Ousterhout, n.d.), but 
those algorithms are not Byzantine Fault Tolerant.  

The Byzantine Generals Problem (Lamport et al., 1980) is a specific occurrence in the digital systems 
(especially distributed ones) in which a component might fail in a way that still registers to the 
system that it is operational, therefore presenting a misleading health indicator to the rest of the 
system. 

While the Raft algorithm provides a level of resilience in case of follower failure, it does not 
adequately handle a possible Byzantine leader, nor can it properly handle a Byzantine follower. 
Therefore, this paper will discuss a Byzantine fault tolerant adaptation of Raft algorithm with a 
particular focus on hardening the leader election and log replication. 
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2. Background 

2.1. Related Work 

There are multiple approaches to providing the resistance to Byzantine Faults, such as using 
symmetric key cryptography (Ateniese et al., 2008) and message signing (Tian et al., 2021), using 
document hash chains and generated timestamps (Abadi et al., 2020). Another promising avenue is 
to use the blockchain principles in order to detect failures in the system when verifying the chain 
(Narayanan, 2016) 

Unfortunately, adding additional system checks to an already existing algorithm will reduce the 
performance of these algorithms. This fact therefore necessitates that the availability check is 
performed in the least possible amount of steps. A good method to implement said functionality 
would be to remove expensive Byzantine signatures and to set the minimum of 5f + 1 acceptors 
which will allow it to have up to f faults, 3f + 1 proposers and 3f + 1 (Martin & Alvisi, 2006).  

While the Paxos consensus algorithm is a much more mature algorithm than Raft, it has already been 
a subject of similar research. An example of said research would be the Cheap Paxos implementation 
by Leslie Lamport and Mike Massa, which can handle faults up to 2F + 1 processors, but does such 
on the assumption that the non faulty processors do not jump around as fast (Lamport & Massa, 
2004). 

A similar modification was proposed by (Dumovic & Jain, n.d.) called Battleship. While it shares the 
general approach to the problem of the Byzantine fault tolerance as this proposal, it introduces 
several complexities that can be further simplified. 

 

2.2. Statement of the Problem 

Raft is a consensus algorithm which produces an equivalent result to multi-Paxos, but with the 
additional goal of being simpler and more understandable. This is achieved by separating the key 
elements of the consensus (leader election, log replication), and reducing the number of states that 
the state machine needs to consider. 

Raft algorithm guarantees that the following properties are always true: 

- Election Safety 

- Leader Append-Only 

- Log Matching 

- Leader Completeness 

- State Machine Safety 

While the existence of a strong leader simplifies the management of the replicated log, and the 
leader election allows a certain level of fault resilience, it also introduces a dangerous failure point 
for malicious actors. 

 

3. Failure Points 
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The failure points can be roughly divided into the following categories: Client - Cluster fault, 
Consensus fault and Leadership election fault.  

Client-Cluster faults occur when the leader is either not responding or falsifying client requests or 
responses. 

Consensus faults are caused by the faulty node, which can either attempt to respond twice with 
conflicting results, or may attempt to overwrite existing commits, or attempting to impersonate 
other nodes. 

 

Leadership Election faults are caused by faulty nodes attempting to rig the election by delaying 
votes of other candidates, attempting to vote multiple times or by falsely initiating the voting in 
order to lock up the cluster. 

 

4. Providing Byzantine Fault Tolerance 

4.1. Assumptions and Necessary Configurations 

The assumptions for this protocol are as follows: 

- The client is always sending valid commands and is therefore trusted 

- The malicious actor does not have control over the network, therefore it cannot interfere 
with the messages from non faulty nodes. 

- Client is aware of all nodes in the cluster 

- Each node has an integer identifier that is incremental, and starts from 0 

To provide the Byzantine fault tolerance, the cluster needs to form a valid quorum in face of f failures. 
Since the minimum number of replicas in a Byzantine fault tolerant system is 3f + 1, a valid quorum 
needs to contain 2f + 1 valid responses. 

To prevent forging of the node to leader communication, and in order for the client to validate the 
cluster response, the messages must be cryptographically secure. This is achieved by generating a 
set of public RSA keys that are shared across nodes and clients, while the associated private keys are 
secret and known only to the issuing node. The nodes therefore are able to verify that the message 
received is actually from the sending node instead of being spoofed. 

To prevent a possible byzantine leader from forging the client commands, the commands 
themselves are also encrypted with the RSA client key. The client public key is also known to all 
nodes. 

Unless otherwise specified in the next section, the behavior of the cluster itself is the same as in the 
original Raft specification. 

In the following section, all messages that cannot be verified via the public key associated with the 
originating node will be considered as invalid and will be ignored. 
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5. Implementation 

5.1. Log Replication 

In order to properly append the new data to the log, the leader needs to ensure that the log entry in 
question is prepared on 2f + 1 nodes in order to ensure the existence of data. The original algorithm 
performs this operation in one step with a single AppendEntry RPC call, but this behavior does not 
ensure eventual existence of the data in question.  

This necessitates that the AppendEntry RPC call is split into two RPC calls: 

- PrepareEntry RPC 

- CommitEntry RPC 

Both the PrepareEntry and CommitEntry messages are encrypted with the leader private key, while 
the acknowledgements to the same are encrypted with the originating node private key. 
Additionally, the PrepareEntry RPC contains the original command sent by the client in order to 
ensure no tampering occured. 

The PrepareEntry RPC call sends the data to the follower nodes. The follower nodes validate that the 
command originated from the client and that it was not tampered with by decrypting the client 
command. In case the command is confirmed valid with the client public key, that data is then 
prepared for commit, and the nodes notify the leader as soon as the message is prepared with the 
generated hash for said update. 

Once the leader receives 2f + 1 acknowledgements to the PrepareEntry RPC, it constructs a 
CommitEntry RPC message that needs to contain the proof of 2f + 1 acknowledgements that the 
leader received for the node to commit the log entry. Additionally, all the acknowledgements need 
to contain the same message hash in order to ensure that the leader did not send different messages 
to different nodes. If the CommitEntry RPC message does not contain 2f + 1 acknowledgements, or if 
the hashes provided in the acknowledgements do not match the prepared hash and leader provided 
hash, the message is ignored. 

As with the PrepareEntry RPC, the follower nodes will return acknowledgement of the commit to the 
leader, which are passed to the client as a proof of replication, in addition to the result of the 
operator request. 

If the client does not receive the response in a reasonable timeframe, or if the proofs contained 
within the same response do not match each other, the client can trigger leader re-election by 
broadcasting ProposeTermChange RPC to all nodes in the cluster. 

 

6. Leader election 

In the original Raft algorithm, leader election is triggered when one of the following conditions are 
met: 

- The leader stopped sending heartbeat messages 

- The election timer timed out on one of the nodes 
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While this system works well in theory, in reality it is susceptible to faults caused by either accidents 
or malicious behavior. 

Therefore, to harden the leader election, the original leader election is replaced with a round robin 
algorithm. The round robin algorithm is triggered when one of the aforementioned conditions (no 
heartbeat messages from the leader or election timeout) are met and selects a new leader based on 
the t mod n formula, in which t represents the next term, and n represents the number of nodes in 
the cluster. 

Once the candidate node determines which node should be the new leader, it broadcasts the 
message via the ProposeTermChange RPC that contains the index of next turn and calculated ID for 
the next leader. After sending the ProposeTermChange RPC, the sender resets the election and 
timeout timers. 

If the calculated leader is invalid according to the t mod n formula, or if the next term is not the next 
term index as written in the node state, the message is discarded. 

Once the next leader receives the message, it sends TermChange RPC containing the hash of the last 
committed log entry. If said log entry does not match the last log entry on the receiving node, the 
message is discarded. If the last committed log entry hash is valid, the node signals its acceptance 
of the leader. 

 

Once the proposed leader acquires the 2f + 1 acceptances from other nodes, it commits the term 
change via the Log Replication methodology as previously described, with the acceptances being 
used as a proof of validity. 

Each node logs the ProposeTermChange RPC that triggers this process in order to handle a Byzantine 
perspective leader. In case a ProposeTermChange RPC is triggered, but no leader was elected within 
its own election or heartbeat timeout timer, it increments the term in ProposeTermChange RPC and 
triggers a new ProposeTermChange RPC broadcast with the new increment. This procedure is 
repeated until a new leader is elected, or until the client triggers reelection. 

 

7. Evaluation 

Compared to the normal Raft algorithm implementation, the proposed modification is significantly 
slower. During the testing, it has been noticed that there is a minor increase in time required for the 
cluster to commit the new log due to usage of RSA encryption and modified log commit and leader 
election protocols.  

The testing covered all the potential failure points as specified previously, and this implementation 
managed to provide tolerance to said failure points. The following tests were performed on 4- and 
7- member clusters. 

Client cluster failure tests consisted of two cases - cluster not responding to the requests and cluster 
returned tampered response. In the case of the cluster not responding to the requests, the cluster 
contained one leader that refused all requests after the election, but would still send heartbeats in 
order to postpone election. Once the client request timeout expired (600 ms), it broadcasted 
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ProposeTermChange RPC to the cluster to trigger election. Said election replaced the byzantine 
leader and the request was resent and properly processed. The behavior of the cluster was similar 
in case the leader returned a tampered response. Once the client noticed that the signatures in the 
proof of work do not match each other, it triggered ProposeTermChange RPC and performed 
elections. 

Consensus error failure tests consisted of two cases: 

- Byzantine node attempts impersonation of another node 

- Byzantine node sends two conflicting responses to an RPC 

The node attempting to impersonate another node used its own private key to sign the message, 
while providing the identifier of another node. When the leader attempted to decode the message 
using the public key associated with the impersonated node, the decryption failed and said proof of 
work was disregarded. 

When the byzantine node attempted to send conflicting messages, the leader node would disregard 
any messages that did not match the expected commit hash. This behavior was expected and 
noticed in both PrepareEntry and CommitEntry RPCs. 

Leader Election fault testing comprised of four test cases: 

- The next leader does not respond to ProposeTermChange RPC 

- Byzantine nodes collude to switch terms between themselves by proposing invalid term 
identifiers. 

- Byzantine node acknowledges leader election multiple times 

- Byzantine node triggers elections prematurely 

While the next leader did not respond to ProposeTermChange RPC within the election timer of the 
nodes, the broadcasts itself were logged by receiving nodes. Since the leader election is triggered by 
either election or heartbeat timeout, the next node that triggered any of the timeouts increased the 
term identifier and sent a new ProposeTermChange RPC with the new timer. The node associated 
with that identifier responded to the ProposeTermChange and the election procedure continued 
normally.  

When two byzantine nodes attempted to propose term change to a term that is not next in the 
sequence, the proposed leader did not send TermChange RPC since it can internally verify that it is 
not yet the requested term (id not next in sequence, there was no non responsive 
ProposeTermChange broadcasts). In one case that the term proposed by the byzantine node was 
another byzantine node, and said node did send out TermChange RPC, the other nodes did not 
respond with acceptance due to the internal term verification. 

When the node was set to trigger elections every 10 - 23 ms (instead of standard 150 - 300 ms), the 
ProposeTermChange requests would be ignored by the next leader since it could verify that the time 
elapsed from the previous term change was less than the lower bound for election timeout. 
Attempts to send multiple acknowledgements to the election were discarded, since the proofs of 
approval need to be unique per node. 
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8. Conclusion 

This modification to the Raft consensus algorithm implements Byzantine fault tolerance by 
enforcing cryptographic signing of messages in order to prevent node impersonation and requiring 
proof of validity for leadership elections and log commits in order to prevent Byzantine leaders and 
nodes. 

Additionally, it removes the possibility of a Byzantine leader preventing progress in the system by 
implementing a round robin leadership change method that does not depend on trust in the cluster. 
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